
Pergamon
Int. J. Solids Structures Vol. 34. No. 10, pp. 1283 1292.1997

~D 1997 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0020-7683/97 $17.00 + .00
PII:S002o-7683(96)00082-o

ON MIXED VARIATIONAL FORMULATIONS OF
LINEAR ELASTICITY USING NONSYMMETRIC

STRESSES AND DISPLACEMENTSt

E. BERTon
Department of Mechanics, University of Miskolc, H-3515 Miskolc, Hungary

(Received 18 July 1995)

Abstract- Enforcement of the symmetry constraint on the stress tensor in dual mixed variational
principles using nonsymmetric stresses is usually achieved through introducing the rotations as
Lagrange multipliers. This paper presents a new way for imposition of the symmetry requirement
on the stress tensor assumed to be not a priori symmetric. The central idea in our approach is to
find symmetry-equivalent conditions that can be incorporated into the corresponding variational
principles using the displacements as Lagrange multipliers. © 1997 Elsevier Science Ltd. All rights
reserved.

I. INTRODUCTION

The easiest way to ensure the symmetry of a second-order tensor is to consider only its six
appropriate components to be independent. This fact is consistently utilized in the classical
dual and dual mixed variational formulations of linear elasticity, when the stress tensor is
assumed to be a priori symmetric (Oden and Reddy, 1983; Washizu, 1975). Using six stress
variables instead of nine means not only the fulfillment of the three rotational equilibrium
equations, but also seems to be advantageous from the point of view of numerical approxi­
mation. However, the rather simple condition of symmetry, when satisfied a priori, is the
indirect source of many computational difficulties experienced in dual and dual mixed finite
element formulations.

The symmetry constraint is responsible for the fact, for example, that the dual equation
system of elasticity is a fourth-order (elliptic) problem. Consequently, a pure equilibrium
formulation, based on the principle of minimum complementary energy, requires C I con­
tinuous approximation of the independent stress components or, equivalently, of the three
non-zero components of the second-order stress function tensor (assume that the variables
are approximated conformly). Efforts made by Fraeijs de Veubeke and his school to
construct effective and stable equilibrium elements for structural problems have led to the
recognition that many of the difficulties involved in stress-based finite element formulations
can be avoided, if the stress tensor is not assumed to be a priori symmetric (Fraeijs de
Veubeke, 1975). A weaker imposition of the constraint of symmetry can be achieved by
introducing the rotations as Lagrange multipliers to enforce the rotational equilibrium
equations into the dual mixed variational principle of Fraeijs de Veubeke (1972). Equi­
librium elements based on this principle require only CO continuous approximations of the
independent stresses or first-order stress functions and have been developed, for instance,
by Fraeijs de Veubeke (1973; 1975), Fraeijs de Veubeke and Millard (1976), and Amara
and Thomas (1979) for two-dimensional problems, and Atluri (1983), Murakawa and
Atluri (1978; 1979), and Puch and Atluri (1986) for nonlinear problems.

Construction of stable and efficient mixed elements based on the Hellinger-Reissner
variational principle (with symmetric stresses) has also proved to be difficult, even for the
two-dimensional case. One of the possibilities to overcome the difficulties is to give up the
a priori symmetry of the stress tensor and to impose it in a weaker sense through the
introduction of the rotations as Lagrange multipliers (for other possibilities see Brezzi
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and Fortin, 1991). The resulting variational principle in terms of nonsymmetric stresses,
displacements and rotations is not less than that proposed by Reissner (1965). Mixed
elements based on this three-field principle have been developed by Arnold et al. (1984),
Morley (1989) and Stenberg (1988), implementation aspects and numerical results for plane
elasticity problems have been presented by Stein and Rolfes (1990) and Klaas et al. (1995).
Although the low-order elements developed in the above mentioned papers for plane
elasticity problems proved to be efficient, a possible objection to this three-field variational
formulation may be that the discretization of a general three-dimensional problem requires
the approximation of 15 independent variables. Arnold and Falk (1988) have overcome
this problem by developing a new two-field mixed formulation in terms of nonsymmetric
"pseudostresses" and displacements. Their functional is very similar to that of Hellinger­
Reissner, and the true (symmetric) stresses can be easily recovered from the pseudostress
tensor by linear combinations of its components. Using this principle, the only difficulty is
the imposition of the prescribed tractions on the pseudostresses.

In this paper it will be shown that enforcement of the symmetry constraint on the
stress tensor by another way than using rotations as independent variables is possible. The
key lies in finding symmetry-equivalent conditions for the stress tensor or, more precisely,
conditions that assure the vanishing of the skew-symmetric part of the nonsymmetric stress
tensor. The symmetry-equivalent conditions proposed in Section 3 can be incorporated
into dual mixed variational principles using the displacements as Lagrange multipliers, and
the introduction of the rotations as additional multipliers is not needed. This new approach
leads to a generalization of the Hellinger-Reissner variational principle, and to a new
interpretation of Fraeijs de Veubeke's principle.

2. NOTATION AND PRELIMINARIES

Consider the region n, occupied by the elastic body, in the three-dimensional space.
Let n be bounded by a sufficiently smooth boundary an = r = r, u r u , where rr and r u

are disjoint closed subsets of r with outward unit normal n. The elastic body is subjected
to given body forces with density fin n, prescribed surface tractions t on r, and prescribed
displacements Ii on r U"

The classical dual variational formulation of the linear elasticity problem is based on
the principle of minimum complementary energy. Its functional,

(I)

is considered over the space of all stress fields T satisfying the translational and rotational
equilibrium equations

T~1+f' = 0 in n,
and

T kl
_ T 1k = 0 in n,

respectively, and the stress boundary conditions

The (symmetric) strain tensor ekl is determined by the inverse stress-strain relations

(2)

(3)

(4)

(5)

where the fourth-order tensor A k1pq = A pqkl = A 1kpq is the elastic compliance tensor. Note
that after satisfaction of the six constraints of eqns (2) and (3), the functional (I) depends
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only on thrcc independent stress components, or, if second-order stress functions are used,
on the three non-zero components of the second-order stress function tensor.

The advantage ofequilibrium finite element formulations based on the above principle
is that the variable of primary interest, the stress field, appears as a directly approximated
and computed variable (in contrast to the displacement-based virtual work or potential
energy approaches). It is very difficult, however, to create finite element spaces for general
problems that satisfy, a priori, all the necessary constraints (2)-(4), and at the same time,
the traction reciprocity conditions at the element boundaries. Conforming equilibrium
elements for the complementary energy principle require moreover C I continuous approxi­
mations of the independent stress variables or, equivalently, of the independent second­
order stress functions.

The origin of numerical difficulties mentioned above can be easily traced back to the
symmetry requirement on the stress tensor. If the stresses are not assumed to be a priori
symmetric, satisfaction of the translational equilibrium alone requires only first-order stress
functions (Fraeijs de Veubeke, 1975). Equilibrium elements with relaxed symmetry of
the stress tensor have many advantageous properties (comparing to the conventional
equilibrium elements) and are based on the dual mixed variational principle proposed by
Fraeijs de Veubeke (1972), originally for finite deformation problems. In linear elasticity,
this principle is considered over the space of all nonsymmetric stress fields T satisfying the
translational equilibrium equations (2) and the stress boundary conditions (4), and all
skew-symmetric rotation fields ep. It seeks a saddle point of the functional

ff(T,ep) = r (~Tklelk+Tkleplk)dQ.- r nkTkluldr,
In J~

(6)

where the three non-zero components of the infinitesimal rigid body rotation tensor eplk are
the Lagrange multipliers enforcing the symmetry condition (3) into the principle. Note that
after satisfying the three translational equilibrium constraints (2), this functional depends
only on six independent (nonsymmetric) stress components or, equivalently, on six non­
zero components of the tensor of first-order stress functions (Bert6ti, 1994).

This principle allows us to construct isoparametric equilibrium elements with strongly
diffusive surface tractions at the element boundaries and with independent approximations
of the rotations. It should be mentioned, however, that for situations where body forces
exist, it is necessary to construct particular solutions to the translational equilibrium
equations. Additional implementation difficulties may arise moreover in the imposition of
the prescribed surface tractions, and the introduction of the displacements (at least on the
boundary n is almost inevitable for general problems.

Another possibility of resolving the difficulties involved in pure equilibrium for­
mulations is to enforce the translational equilibrium constraint (2) into a Hellinger-Reissner
type variational principle. The functional of this principle,

£(T, u) = r(~Tklelk + T~1ul +PUl) dO. - r nk TklUl dr,
In J~

(7)

is considered over the space of all symmetric stress fields T satisfying the stress boundary
conditions (4) and all displacement fields u (the Lagrange multiplier). It turned out,
however, to be difficult to build stable finite element spaces for this principle, even for plane
elasticity problems. The basic source of difficulties, as discussed by several authors (see
Arnold and Falk, 1988; Brezzi and Fortin, 1991; Morley, 1989; Stenberg, 1988, for
example), is that the stress tensor in the Hellinger-Reissner principle is symmetric (and this
condition does not allow the direct use of those stable spaces developed for scalar second­
order problems).

One way to overcome the aforementioned problem is the modification of the Hellinger­
Reissner principle by introducing the rotations, again, as independent variables (see also
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Brezzi and Fortin, 1991). The resulting three-field dual mixed variational principle, which
was proposed by Reissner (1965), can be written in the following form:

.eJl'(T,u,tp) = r(~Tkle'k+T?~ul+Pu,+Tk'¢'k)dn- r nkTkluldr. (8)
In J~

Here, both u and 4> are Lagrange multipliers to enforce the translational as well as the
rotational equilibrium eqns (2) and (3), respectively, into the principle. The mixed finite
elements developed by Arnold et al. (1984), Morley (1989) and Stenberg (1988) are based
essentially on this variational principle. Reissner's principle was also considered by Hughes
and Brezzi (1989), where construction of variational formulations with drilling degrees of
freedom was investigated.

Enforcement of the symmetry constraint on the stress tensor through the introduction
of the rotations as independent variables is quite a "natural" way, as the term y*/¢'k in
the above principles immediately implies the three rotational equilibrium equations (3).
However, it is a hard task to build numerically efficient (and stable) finite elements for three­
dimensional problems using a three-field mixed variational principle with 15 independent
variables. A resolution for this problem was given by Arnold and Falk (1988) by the
development of a new two-field mixed variational formulation in terms of nonsymmetric
pseudostresses and displacements.

In the next sections, it will be shown how two-field mixed variational principles with
nonsymmetric stresses and displacements can be derived from Reissner's as well as Fraeijs
de Veubeke's variational principle, finding symmetry equivalent conditions for the stress
tensor. We assume from now, for simplicity, that n is a simply connected domain.

3. SYMMETRY-EQUIVALENT CONDITIONS FOR THE STRESS TENSOR

Consider the additive decomposition of the nonsymmetric stress tensor T :

T = O'+-r,

where

0' := symm T = ~(T+T')

and

-r := skew T = ~(T - T')

(9)

(10)

(11)

are, respectively, the symmetric and skew-symmetric parts ofT. Making use of eqn (9), the
translational equilibrium equations (2) and the stress boundary conditions (4) can be
written in the following forms:

and

(J?~+ r~~ +P = 0 in n, (12)

(13)

If T is symmetric, it coincides with 0' and -r vanishes. In this case, it is obvious that rk~ = 0
in nand nkrkl = 0 on r, and eqns (12) and (13) hold for the symmetric stress ten~or 0'.

Conversely, ifT is nonsymmetric but -r satisfies the conditions r~ = 0 in nand nkrkl = 0 on
r t , eqns (12) and (13) hold again for the symmetric part of the stress tensor 0'. Do these
two conditions imply the vanishing of -r in Q and, thus, the symmetry of T? By the following
Lemma and its proof it will be shown that if nkrkl = 0 holds also on r u, then the above two
conditions assure the symmetry of the stress tensor T in n.
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Lemma 1
Let T be divergence-free in Q and let its traction be zero on the whole boundary r = cQ,

l.e.

and

Then ,ki = 0 in Q.

,~~ = 0 in Q, (14)

(15)

Proof
Consider an arbitrary vector field, VI, in Q. Let eqn (14) be multiplied by Vi and then

integrated over the domain Q. We obtain:

(16)

Applying the divergence theorem, eqn (16) can be transformed into

(17)

and since eqn (15) holds, we have

(18)

An important observation is that vanishing of T does not follow immediately from eqn
(18), as all the nine components of the gradient tensor VI;k cannot be chosen arbitrarily;
three components of VI;k always determine the vector Vi and the other six non-independent
gradient-components. In a general curvilinear coordinate system, there exist many possible
choices for these three arbitrary components of Vi;k' Considering the fact, however, that our
choice should be independent of the coordinate system in which we are working (think of
the most important Cartesian one), the three arbitrary components must stand in three
different rows of the matrix of VI;k. Of course, eqn (18) must hold for every possible choice
of the arbitrary triads (they are Y = 27 in number) that gives the solution for the vector
field Vi.

Taking into account the skew-symmetry of ,kl, eqn (18) takes the form

(19)

According to the above considerations, eqn (19) must also hold when either of the triads
v2;], V3;2, VI;3, or V3;]' V2;3, V1:2 is chosen. If the first triad is arbitrary, the second one is
determined, and vice versa, but the three terms in parenthesis in eqn (19) remain arbitrary
in either of the cases. Since the integral (19) is independent of Q, this means that the three
non-zero components of ,ki must vanish, i.e. T = 0 in Q. D

The consequence of Lemma I is that eqns (14) and (15) are equivalent to the symmetry
of the stress tensor T in Q. This fact makes it possible to enforce the symmetry requirement
on the stress tensor by a different manner than it was done in Section 2, i.e. using the
displacements as Lagrange multipliers.
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4. A GENERALIZATION OF HELLINGER-REISSNER PRINCIPLE IN TERMS OF
NONSYMMETRIC STRESSES AND DISPLACEMENTS

The basic idea, which leads to a new interpretation of the three-field Reissner's principle
with functional (8), is that the rotation tensor be considered no more as an independent
variable, but as the skew-symmetric part of the displacement gradient tensor. In view of
the previous section and using the identity

(20)

the term T*'¢/k in eqn (8) can be replaced by ,k'U{;k, where Ui;k depends on the three
displacement components u,. The resulting two-field dual mixed variational principle in
terms of nonsymmetric stresses and displacements with functional

.ff*(T,u) = r[~Tklelk+T~ful+f'ul+,klu'k]dQ- r nkTk'u,dr, (21)
In Jru

and with subsidiary conditions

and

,y = 0 in Q,

(22)

(23)

(24)

(25)

can be considered as a generalization of the Hellinger-Reissner variational principle.
The stationary value of Jt*(T, u) is found by setting its first variation equal to zero.
Applying the divergence theorem we can write:

6£*(6T,6U) = L[6Tkl(e'k-u';k)+6u,(T~+t)+6,klul;ddn

+ { (nk6Tk'u, +nk,k'6ul) dr- r nk6Tk'u,dr=0. (26)
Jr J~

It is important to see that 6T is constrained not only on the surface part r" because of egn
(25), but also in n, as its skew-symmetric part, 6't', is constrained through egn (23) in n.
Thus, only its symmetric part, 6(1, has arbitrary variation in n. However, by the use of the
additive decomposition of the displacement gradient tensor

(27)

where U(l;k) and Uf/;k] are the symmetric and skew-symmetric parts of U';b respectively, and
the identity

- kl l('Tkl 'T'k) 'TkI1( ) 'Tk10, U/;k = '2 u -u U';k = u '2 U{;k-Uk;l = u U[I;kj,

eqn (26) can be transformed into

(28)
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6£*(6T,6U) = In [6(Tk'(e/k-u(/;k))+6u/(T~f+f')ldn

+ rnkTk'6u,dr + r nk 6Tkl(u/-u,) dr = 0, (29)
Jr Jru

and we can observe that the coefficient of 6Tkl has vanished, i.e. free variation of 6Tk/ is not
needed at all in n.

Variational equation (29) enforces the Euler equations and natural boundary con­
ditions of the generalized Hellinger-Reissner principle, viz., the six strain-displacement
relations

three translational equilibrium equations

T~f+t = 0 in n,

three zero-traction conditions for the skew-symmetric stress tensor

and three displacement boundary conditions

(30)

(31 )

(32)

(33)

Note that, following from the results of Section 3, eqns (32) together with (23) ensure the
symmetry of the stress tensor T (the vanishing of't').

Remark 4.1.
In the above principle, the nonsymmetry of the stress tensor, T, is constrained by the

fact that its skew-symmetric part, -r, must be divergence free in n, according to eqn (23). In
practical applications, therefore, it is advisable to consider T as the sum of an arbitrary
symmetric tensor and a skew-symmetric tensor that satisfy eqn (23). This latter condition
can be easily and identically satisfied, if T is derived from an arbitrary scalar function, X, as

where i 'm is the contravariant permutation tensor. Then,

which means, that the generalized Hellinger-Reissner principle has 10 independent vari­
abies: six symmetric stress components (l', one arbitrary scalar function X and three
displacement components U/. In finite element procedures, imposition of the stress boundary
conditions for T can be achieved, for example, by applying the A-multiplier technique
(Brezzi and Fortin, 1991).

5. FRAEIJS DE VEUBEKE'S PRINCIPLE IN TERMS OF NONSYMMETRIC STRESSES
AND DISPLACEMENTS

In the original variational principle of Fraeijs de Veubeke with functional (6), the
displacements do not appear as variables; they can be obtained from the strains and
rotations by integration. According to the considerations made at the beginning of Section
4, this two-field principle can be modified by replacing the term T kl4>/k by TkIUI;k' The result
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is a two-field dual mixed variational principle in terms of nonsymmetric stresses and
displacements with functional

o?*(T, u) = r(Tklelk+Tklul;k) dn- r nkTkluldr,
In Jru

and with subsidiary conditions

T~k+P = 0 in n,

and

(34)

(35)

(36)

(37)

(38)

Derivation of the independent Euler equations and natural boundary conditions of this
principle is very similar to that presented by Bertoti (1994), where, instead of the dis­
placements, the rotations as independent variables were used. A brief derivation for a
simply connected domain with two surface parts r u and r, (ru u r, = r = an) is given in
the following. The boundary curve between r u and r, is denoted by g.

The translational equilibrium eqns (35) can be identically satisfied by introducing the
nonsymmetric tensor of first-order stress functions !/J;, such that

(39)

where ekmr is the contravariant permutation tensor and fkl is a particular solution to eqn
(35). The underlined index,. indicates that, following from the indeterminacy property of
the first-order stress functions, !/J; has only six independent non-zero components, !/J;. The
three zero-valued components can always be chosen in such a way, independently of the
coordinate system in which we are working, that they stand in three different columns of
the matrix of!/J; (Bertoti, 1994).

The stationary value of eqn (34) can be obtained by setting its first variation equal to
zero. During the course of integral transformations, one has to take into account that

(i) following from eqn (39), equilibrated stress variations can be expressed by first-order
stress function variations J!/J; as

(40)

(ii) stress boundary conditions (38) in terms of b!/J; take the form

(41)

and this equation can be identically satisfied by introducing an arbitrary vector field
/ defined on the boundary part r, as

(42)

provided equation
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(43)

holds (g is the boundary curve between the surface parts r u and r,), where t is the
unit tangent to g (for proof see Bert6ti, 1994).

After integral transformations, taking into account eqns (40)-(43) and applying the
Gauss as well as the Stokes theorems, and also the identity (28), the stationary value of eqn
(34) is expressed by the variational equation

(j:?l'*«(jt/J~,(jUI) = In f,km~(elk+U[I;k);m(jt/J~ dO

- r r~~(juldO+ r nkrkl(juldr+ r nmf,km':(elk+U[/;kJ-UI;k)(jt/J~ldr
In Jr Jr"

- r nmf,kmr(elk +U[I;kJ);,VI dr+l F(elk +U[/;k] - UI;k)VI ds = 0, (44)
Jr, ~

with six arbitrary first-order stress function variations (jt/J; in 0 and on the boundary part
r u, with three arbitrary displacement variations (jUt in 0 and on r, and with an arbitrary
vector field Vi on r, and g.

Variational eqn (44) implies the independent Euler equations and natural boundary
conditions of the principle under consideration, i.e. the six independent first-order com­
patibilityequations

the symmetry-equivalent conditions

r~~ = 0 in 0

and

three first-order compatibility boundary conditions

six independent displacement boundary conditions

(45)

(46)

(47)

(48)

(49)

and three continuity conditions for the displacement gradient between the two surface parts
r u and r,

(50)
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